
Performance Evaluation of Software Defined
Networks

Habiba Amed1, Taner Cevik2,*
1Department of Computer Engineering, Istanbul Aydin University

2,*Department of Software Engineering, Istanbul Aydin University, Istanbul, Turke.y

Abstract— This paper aims to build an SDN which decouples
the plane of data and plane of control. The implementation of
the study is done using the virtualization technology.
Virtualization technology is a networking technology which is
used for the ease of application of networks without using
physical devices. Thus, VMware created an interesting
technology which allows a host operating system, like one of
the popular Linux distributions, to run one or more client
operating systems (such as windows). Therefore, in a flexible
computing environment, the server is moved from one
location to others and during the movement, they can pause
the virtual machine and copy a file. Network virtualization is
often mentioned as virtual private networks (VPNs) and
occurs in various types. All of these theories are vital because
they create the core inspiration for that is now called
software-defined networking (SDN). Software-defined
networks (SDN) is a design method which makes perfect and
easy network operation. SDN has three logical layers, namely,
application, control, and data. Besides, for communicating
between the control and data planes, a protocol is used, that
is called OpenFlow. OpenFlow is the origin of the decoupling
of control and forwarding functions. According to the
simulations that are conducted on the designed simple
network architectures, the throughput of %90 is measured.

Keywords— Software Defined Networks, Data plane, Control
plane, Application layer, OpenFlow.

I. INTRODUCTION

Just a few years ago, network resources, storage and
computing were deliberately separated operationally and
physically. Even systems utilized to control these
resources [1], [2], [3] are usually physically separated.
Utilization that interacts by any of these resources, like an
operational monitoring system that includes access policies,
systems, and access procedures to a significant extent, is
also at hand for security purposes. It is the preferred
method of IT departments. Forcing organizations to
combine these different elements occurs in data center
environments immediately after the initiation (and demand)
of cheap computing, storage, and networking. Applications
that were introduced by this change of approach made the
governance and running of these resources considerably
closer than ever seen before.

Data centers [4] are outlined to physically separate
conventional elements (e.g. Personal Computer servers),
their associated repositories, and networks which connect
them to the users. The power of computing in such data
centers focuses on particular server functionality that runs
utilization to serve desktop users, like mail servers,
database servers, or other commonly used range of
capabilities. Previously, these functions, which were

typically deployed on desktops within an organization,
were only used by departmental servers that provide
services proper to local use. Department servers were
moved to the data center as time went on for various
reasons, such as ease of administration and sharing among
users of the organization.

An interesting transformation took place about ten
years ago. VMware companies made up an attractive
technology which allows an operating system to run more
operating system within the proper operating system [5].
VMware created a small program which can simulate all
computer environment. Later, this technology brought
together certain resources among virtual machines. The
controller program has been named a hypervisor [6].
Initially, the design purpose is for those who need to run
Linux in their programming requirements, or windows (it
was an enterprise model at that time), designed for
situations only that require the execution of a particular
operating system environment. Due to the operating
system virtualization’s improvement, now the server can
use a single, proper operating system like Microsoft
Windows Server, and the specific platform is developed
for that [7].

In a flexible environment, servers can be moved to any
data center location and during movement, it can copy a
file by pausing the virtual machine. With the improvement
in technology, and supporting flexibility in-network, the
cooling, and storage issue raise which will effect storage
and computing power, and also operational efficiency [8].
Companies such as Amazon and Rackspace, which took up
large amounts of storage and calculation for price
efficiency, realized that they did not use all their computers
and warehouses efficiently, and were able to resell their
backup investment powers and warehouses to external
users to compensate for investments.

On another method to overcome this dilemma is which
during movement of the virtualization environments,
performing environments are usually managed by the
business organization. Generally, it is an ethernet LAN
which connects virtual machines and all physical devices.
In a multi-user data center, network resources, storage, and
computing may be provided independently or within
isolated segments. The main problem here is that the
physical displacement means physical address
displacement. When data centers are evaluated, network
hardware stalled in terms of improvement further away
speeds and feed. The Network operator can create a
network and virtual network with using IP and MPLS [9],

Habiba Amed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (3) , 2020, 31-36

www.ijcsit.com 31

ISSN:0975-9646

therefore data center operators can create virtual machines
to execute virtual network instead of physical ones with
using virtualization technologies. Virtualization of the
network is often mentioned as virtual private networks
(VPNs) and occurs on various types. When the idea of
distributed plane of control reappeared.

Software-defined networking [10], is a technology
which is based on these concepts and those concepts are
vital, so they create core inspiration for that. Then it has
been realized that this processing power can be used to
logically operate a central control plane and use a
potentially inexpensive commodity pricing switching
equipment. Several engineers at Stanford University have
formed an OpenFlow protocol that can be applied in such a
configuration. OpenFlow is designed for several devices
that contain only a plane of data for replying to command
which is directed to them from a (logical) centralized
controller that hosts a plane of control for this network. A
hybrid approach is more likely where some of the
networks are logically driven by a centralized control
device, the other portions being operated by the more
conventional dispersed control plane[8]. It should be noted
which one of the inspirations to create SDN and OpenFlow
is not only where it is programmed, but also the flexibility
of how it can develop a network device.

Another example is the rapid programming of changes
and then the provision of operational support systems
(OSS) [11] implementations to provide fast and optimal
access to the RIB. One of the most important issues around
all these instances in which the discourse among the
applications and the RIB is realized through the RIB
manager.

II. SOFTWARE-DEFINED NETWORKS(SDN)

Although real or virtualized, it is a design method
that makes perfect and facilitates network operations with
closely linking the deal between applications. Generally,
this is achieved using a centralized network control point -
this is usually performed as an SDN controller - this then
regulates, directs and simplifies the connection between
applications that wish to operate with network elements
and those that wish to communicate information to those
applications. The control element then reveals, summarizes
network functions and operations through new,
application-friendly and bidirectional programmatic
interfaces [8].

Software-defined, software-oriented and programmable
networks have a rich and complex set of historical ancestry,
objection and various solutions to these issues. This is the
benefit of technologies that advance software-based,
software-driven and programmable networks that advance
technology based on what is possible. Although SDN
controllers continued to run the press in 2013, many other
developments took place at that time. One of the very
interesting and bright ones is OpenDaylight. OpenDaylight
aims to enable a group and open source framework that
includes software and design to speed up and advance a
common, powerful software-defined network platform
[12].

A. SDN Architecture

The SDN architecture represents a new design which
decouples the plane of control from data and facilitates
network development, interoperability, and scalability.
This separation is possible through the separation of key
components, which are SDN “core”. Besides, the
fundamental differences between the “classical” network
and the new networking paradigm are defined by three
different logical layers as detailed below [13].

1) Logical layers: The SDN architecture can be
represented by three different logical layers, as shown
in Fig. 1.

Fig.1 SDN Architecture

Each layer has different functions in particular:
a) The data plane layer shows the network

infrastructure consisting of physical devices (e.g.,
switches and routers).

b) The controller layer represents “network
intelligence” and is logically centralized in the SDN
controller in this layer. This solution allows the
controller to maintain the overall appearance of the
network placed on the infrastructure layer.

c) The application layer represents the layer on which
network operators and administrators can work. By
centering the network state at the controller layer, it
is possible to set up and control network resources
using software-defined network programs in the
application layer. Also, network operators can
directly write and deploy customized programs
without waiting for vendor versions that may take a
long time.

The abstraction of the layers described above enables
programmers to work on a network abstraction layer
through Application Programming Interfaces (APIs) rather
than working with thousands of different physical devices.
However, this abstraction is only possible if the lower
layer infrastructure makes it possible to interact with
it[14].
A. Control plane

Describes the entity that is accountable of controlling
forwarding traffic choices within the data plane. The
controller is embodied as software that is enforced within
the external central logic device. Therefore, it can be
developed in the absence of the requirement for brand new

Habiba Amed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (3) , 2020, 31-36

www.ijcsit.com 32

hardware [15]. The control plane for the Internet is actually
a compound of layer 2 and layer 3 control planes.
Therefore, this ought not be surprising which the identical
progress and development is needed for both layer 2 and
layer 3 protocols and networks which form this portion of
the networks.

The Layer 2 control plane concentrates on physical
layer addresses, such as IEEE MAC addresses or
hardware. A layer 3 control plane was created to ease
network layer addresses like IP protocol addresses[16].
B. Data plane

The plane of data, processes the datagrams that are
coming from wire or wireless media due to the link-level
operations. It accumulates the datagrams and does basic
accuracy/conformity testing. This is sometimes called a
quick path to packet processing because there is no need to
query other than defining the destination of the packet
using pre-programmed FIB. The issue is for especially for
the cases when packets may not confront to the standards,
for instance, when a packet is received and it has an
unknown destination, then this packet may be sent to the
route processor. There, the control plane may perform
more process on them utilizing RIB [17],[18].

A. SDN switches

On the one hand, thanks to the SDN architecture, the
network becomes a "simple" packet forwarding element.
Otherwise, routing decisions of high-level and status
information are centralized in an external and separate
server controller, rather than imposing policies and
implementing protocols on the evolution of distributed
devices expressed below[19].

B. SDN Controllers

An SDN controller provides services that transcend the
concepts of transient management and centralization as
well as realize a distributed control plane. A general
description of the Software-defined network controller is:
• Distribution and management of the states are

controlled by a database in some cases.
• It is a high-level data model which screens the

relationships among managed policies, resources, and
other services produced with the controller. Usually,
these data models are constructed utilizing the Yang
modeling language[20].

• The interface is ideally derived from the model which
explains the controller's features and services. Some of
the systems have more features and offer powerful
environments, which permit the expansion of core
modules, including those that promotes the dynamic
expansion of controller features, and then release APIs
for new modules:

• A secure TCP audit session between the controller and
the associated agents in the network elements

• A standards-based protocol for providing network
status for implementation in network elements

• A device, topology and service locator, a path
calculation system, and potentially other
network-centric or resource-centric information
services[21].

a. Nox & Pox

Based on the Nox / Pox website [22], NOX was
improved by Nicira and has become open source in 2008.
NOX provides OpenFlow (OF v1.0) with a C ++ API and
an asynchronous, event-based programming model. A
truly significant advantage of widespread academic usage
is the availability of a learning switch and sample code to
emulate a network-wide switch that could be utilized as the
starting code for different programming projects and
experiments. SANE and Ethane are two famous NOX
applications. Ethane is developed by Stanford University
research group for network-wide security and centralized
checklist level. Both have represented the effectiveness of
SDN by significantly decreasing the lines of code that are
needed to implement these functions, which in the past
have received notably more code to execute similar
functions. Due to its promising performance, researchers
have shown MPLS applications on NOX core [23].

 Pox Controller

POX is one of many controllers developed for SDN
applications. POX is a sister project of NOX and has
become faster than NOX. POX is a python-based
OpenFlow controller. The main advantage of POX is that
it is a Python-based Software Defined Networking
controller for developing network applications. The reason
we use POX is that it is already available and easy to learn
and develop applications. Besides the opportunity of easy
and free installation, PyPy works runtime, which enable it
to work anywhere. POX is one of the controllers dedicated
to create an archetypal, typical Software Defined
Controller. ONOS, Floodlight, NOX, etc. Different SDN
control devices are available. POX frames for both sides of
OpenFlow; one for switch side and one for controller side
[24].

The advantages of Pox has over Nox are listed below:

• Pox is a Pythonic OpenFlow interface.
• Pox possesses reusable sample components for path

selection, topology discovery, etc.
• Pox works everywhere and comes with PyPy

runtime, which does not require installation for easy
development.

• Pox can be used in Linux, Mac OS, and Windows.
• It promotes POX, GUI and visualization tools in the

same way as NOX.

Habiba Amed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (3) , 2020, 31-36

www.ijcsit.com 33

• POX is working better when compared to NOX
applications that are developed in Python.

• POX can communicate with NOX by the OpenFlow
v1.0 switches and has specific promote for Open
vSwitch[25].

C. OpenFlow

OpenFlow is a part of research at Stanford University.
The main goal of this project is to allow the practice of
protocols in campus networks, which can be utilized for
research and experiments.

1) OpenFlow Protocol: OpenFlow is not a product of its
own, but it is not one feature of a product; a group of
protocols and an API. OpenFlow protocols are
mainly portioned into two as follows:

• The protocols in the first group sets a wired
protocol(version 1.3.x) to establish a control
session, collect message structure(flow modes) and
statistics to modify flow modifications, and define
the fundamental structure of a switch.

• A configuration and management protocol based on
NETCONF to allocate physical switch ports to the
specific controller(currently version 1.1) that
defines availability(active/stanby) and controller
connection failure behavior[26].

2) OpenFlow Architecture: While OpenFlow fulfills a
standard south-bound protocol (control element to the
agent) to start streams, there is no standard for the
north (application-facing) or east/west API.
OpenFlow is one implementation of SDN, and indeed
is the origin of the SDN because it splits data plane
from the control plane. OpenFlow implements the
data and control planes in distinct network elements.
Fig. 2 shows the overall architectural view of
OpenFlow. The network controllers are connected to
the OpenFlow switches by using the OpenFlow
protocol via a secure channel.

Fig. 2 OpenFlow Architecture

The Architecture Group seeks to handle, indirectly -
defining a general SDN architecture. The critics arise
about SDN architecture and OpenFlow are about the types
of OpenFlow application services provided by an

OpenFlow controller. They are not considered sufficient
for all SDN applications[27].

D. SDN Weaknesses and Challenges

SDN and OpenFlow provide a way to simplify
prototyping, distribution and management of network
elements. However, there are some points to be considered
that can make the network in an unsecured or unusable
state:
• The usability of the controller is the main

consideration.

• Security is also important. In SDN, the controller is
critical component of the network, which exposes the
controller to possible attacks and threats.

• The consistency of flow tables is also a potential
issue. They may be subject to lower security checks,
causing the flow tables to be in an inconsistent state.

• The scalability of the network depends on the
controller, which is a potential bottleneck.

• The performance of the network can also be related to
the adopted control model.

The issues described above have been considered by
the community researchers and still stay as the future
challenges for SDNs[28].

III. METHODOLOGY

In this section, an implementation of the SDNs is
presented. In the outset, the environment for running the
project is prepared. Hence, VirtualBox is installed, because
macOS is used as the operating system. After that, we set
up the Ubuntu operating system on VirtualBox and
mininet on that.

A. Ubuntu 18.04 LTS
Ubuntu 18.04 introduced many new features as well as

many minor changes. It is a long-term support release
based on the Linux 4.4 kernel. Ubuntu repositories support
many large desktops, including Ubuntu desktop (GNOME),
K ubuntu (KDE), MATE Ubuntu, and GNOME Ubuntu
(GNOME3). Ubuntu 18.04 has also featured like minimal
installation. Instead of a complete set of applications, only
the web browser and several utilities are installed[29].

B. Mininet
It is an emulator, which simulates a collection of

network devices and connections in a Linux system.
Lightweight virtualization is used to ensure that a single
system executing the same system looks like a complete
network. Mininet is vital for the open-source SDN group
because it is often utilized as a simulation, verification,
testing tool and resource. A mininet server acts as a real
machine and usually runs the same code. A mininet server
demonstrates the shell of a machine on which optional

Habiba Amed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (3) , 2020, 31-36

www.ijcsit.com 34

programs may be installed and run. These special
programs may receive, send, and process using packets
where a program looks like a real Ethernet, therefore, it is
a virtual switch/interface. Virtual switches have processed
the packets that as if a real switch or router, related to the
method by which they are set up on Mininet hosts[30].

C. Wireshark
Wireshark is a network analyzer that reads, decodes and

delivers packets on the network within an easy to
understand format. Some features of the Wireshark are
being open-source, active maintenance and the ability to
degrade freely[31].

D. Setting up the Pox Controller

The Pox controller is adjusted in two ways:
1. It is first entered into the pox folder by typing cd
pox/pox and then listing the existing files. Then the
forwarding folder is entered using cd forwarding. The next
step lists the files that are available in the forwarding
folder. In the last step, the’ sudo ~ / pox / pox.py
forwarding.l2_learning’ the command sets pox controller
to learn[32].
2. The nano editor is accessed by using the ‘su’ command
and system password. Then, the ‘nano / usr / bin’
command is used to enter the nano editor. After this stage
in nano editor

‘#!/bin/sh
Echo Pox “Controller Habiba Amed”
Sleep2’

commands are written. The pox controller is then set to
debug the packets by typing:
 Cd /home/habiba/pox && ./pox.py
forwarding.l2_pairs info.packet_dump samples.pretty_log
log.level --DEBUG[33].

After completing the adjustment process, we return to
the command line. Then ‘chmod a + x’ is written on the
command line. On Unix operating systems, the chmod
command is utilized to change the access mode of a file. It
stands for the change mode. ’a’ is the abbreviation of all,
which gives the users in the whole group access
permission to the file. ‘x’ allows you to run the file or
search the file if it is a directory[34]. Once the entire
adjustment phase is complete, pox is started immediately
after typing pox on the command line to test it.

E. Designing an SDN in Miniedit

Within the scope of this study, three types of SDNs are
designed. They are single-controller SND, three-controller
SDN and command-line-using designed SDN.

To design an SDN with Miniedit, firstly a terminal is
opened from the application partition in the ubuntu
operating system. The ‘miniedit.py’ file is then moved
from the mininet folder to the home folder. Then, one
controller, three switches and six host machines are added
to the design.

In the next step, the controller is named as ‘POX cont’
and the controller type is selected as OVS controller. First
switch is assigned an IP address 192.168.1.0. This process
is repeated for the other switches respectively. Then all
network devices are connected by clicking on the line tab.
Then, IP addresses are assigned to the hosts. After this
process is done on all six hosts, the first switch and the link
of the first host is assigned the bandwidth of 100 MBits
and the delay of 3ms. Fig. 5 demonstrates the designed
single-controller SDN.

Fig.5 Single-controller SDN

The multi-controller software-defined network is
designed in the same way and illustrated in Fig. 6.

Fig.6 Multiple-controller SDN

To run both designs, you need to write the ‘.py’ file on
the command line. Before running both designs, it is
necessary to start the Pox controller.

F. Designing an SDN by Using the Command Line

To design an SDN by the command line, first start the
controller and then write the following command on the
command line.
‘Sudo mn --topo tree, depth=5,fanout=5 –controller =
remote,ip=127.0.0.2,port=6634 –mac’

This command, designs a custom SDN of the depth
five, branching three, a remote controller with the IP
address 127.0.0.1. At the same time, the port number is
assigned as 6633, as well as the network devices are
assigned corresponding MAC addresses. This given IP is
specific to the local controller.

IV. SIMULATION RESULTS
The values obtained from the ping data are shown in Table
1.

Habiba Amed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (3) , 2020, 31-36

www.ijcsit.com 35

TABLE I PING TIME RESULTS

Hosts Packet
Sent

Packet
Received

Packet
Loss

Minimum
Time

h1-h40 7 7 0 0.077ms
h41-h80 7 7 0 0.084ms
h1-h68 7 7 0 0.077ms

h80-h120 7 7 0 0.07ms
h121-h161 7 7 0 0.077ms
h162-h200 7 7 0 0.092ms
h201-h243 7 7 0 0.081ms

As shown in Table 1, the number of packets sent and
received across the entire network is equal. According to
the ping test, the packet loss is zero and the periods differ.

V. CONCLUSION
Three types of networks are designed and tested. First

type is the single-controller and the second one is three-
controller and the last one is the network, which is created
using the mininet command. The implementation is
performed on MacOs by using virtual box and Ubuntu
18.04LTS. If these projects are applied on other operating
systems, the results may differ. Besides, for the researchers
that intend to design an SDN, either with commands or
graphical user interfece, we strongly recommend them to
use mininet with its miniedit software because of its easy
deployment and implementation.

ACKNOWLEDGMENT
We thank to Ubuntu community for their technical

support during the design of this research. We thank to
stack Exchange website for their help during this research.

REFERENCES
[1] K. Goda, I. M. M. Kitsuregawa ve S. M. I. , «The History of Storage

Systems,» Proceedings of the IEEE, cilt 100, p. 1437, 13 May 2012.
[2] History of Computing. [video]. 2017.
[3] S. Horiuchi, K. Akashi, M. Sato ve T. Kotani, «Network Resource

Management Technology,» NTT Technical Review, vol.15, no. 10, pp.
2-3, Octobar 2017.

[4]

[5]

H. Geng, «Data Center Overview and Strategic Planning,» Data
Center Handbook, Palo Alto,CA,USA, John Wiley & Sons,Inc, 2015,
p. 3.
B. Ward, ”VMware Virtual Machine," in The Book of VMware—The
Complete Guide to VMware Workstation, K. Jurado , Ed., Canada, No
Starch Press Inc., 2002, p. 8

[6] M. Parlakyigit, «parlakyigit,» 29 May 2013. [Online]. Available:
https://www.parlakyigit.net/hypervisor-trleri/. [Accessed: 24
September 2019].

[7] M. Minasi, C. Anderson, B. M. Smith ve D. Toombs, «Windows 2000
Server Overview,» Mstering windows 2000 Server, Third Edition., P.
Gaughan ve C. Henry, Dü, Alameda,CA, SYBEX,Inc., 2001, pp. 1-3.

[8] Seyir Defteri, İTÜBİBD:BİLGİ İŞLEM DAİRE BAŞKANLIĞI,7
September 2013. [Online]. Available: http://bidb.itu.edu.tr/seyir-
defteri/blog/2013/09/06/mpls-(multi-protocol-label-switching---
%C3%A7oklu-protokol-etiket-anahtalama). [Accessed: 24 September
2019].

[9] A. Contini, «Opendaylight,» 16 November 2016. [Online]. Available:
https://www.opendaylight.org/blog/2016/11/16/software-defined-
networking-fundamentals-part-1-intro-to-networking-planes.
[Accessed: 30 September 2019].

[10] H. Hanrahan, «Operation Support Systems,» Network Convergence :
Services,Applications,Transport, and Operations Support, John Wiley
& Sons, Ltd, 2007, pp. 385-398.

[11] T. D. Nadeau ve K. Gray, «Introduction,»SDN: Software Defined
Networks: an authoritative review of network programmability
technologies., Sebastopol, CA, O'Reilly Media, Inc., 2013, pp.
1,2,3,4,5,7,8.

[12] A. Sonba ve H. Abdalkreim, «Performance Comparison Of the state
of the art Openflow Controllers,» Halmstad, 2014.

[13] B. N. Shaker, «Software Defined Networking Architecture and Design
based on Energy Conserving Model,» Baghdad, 2017.

[14] G. R. de Tejada Muntaner, «Evaluation of OpenFlow Controllers»
2012.

[15] A. M. MohamedAhmed, A. Mohamed Musa, M. A.-E. Ahmed ve M.
W.-t. Alameen, «Designing Dynamic Consistency for Multi-
Controller Software Defined Network Topologies,» Hartum, Sudan,
2017.

[16] I. Ahmad, S. Namal, M. Ylianttila, S. M. I. A. Gurtov, S. M. ve I. ,
«Security in Software Defined Networks: A Survey,» IEEE
Communications Surveys & Tutorials, vol.17, no. 4, pp. 2317-2346,
27 August 2015.

[17] P. Charalampos, «A study on Software Defined Networks:Traffic
Engineering,» 2013-2015.

[18] P. Goransson ve C. Black, «SDN Controller,» Software Defined
Networks, MA 02451, USA, Elsevier Inc., 2014, pp. 68-72.

[19] tootoonchian, «noxrepo/nox,» GitHub, 14 February 2014. [Online].
Available: https://github.com/noxrepo/nox. [Accessed: 9 September
2019].

[20] S. Harsh, «Evaluation of Multiple Controller based Software Defined
Networks Architecture over Single Controller Software Defined
Architecture,» 2016.

[21] T. D. Nadeau ve K. Gray, «SDN Controllers,SDN: Software Defined
Networks: An Authoritative Review of Network Programmability
Technologies, M. Loukides ve M. Blanchette, Sebastopol, CA 95472,
O’Reilly Media, Inc.,, 2013, p. 89.

[22] N. C. Fernandes ve L. C. S. Magalhes, «Control and Management
Software for SDNs:Conceptual Models and Practical View,Network
Innovation through OpenFlow and SDN: Principles and Design, 6000
Broken Sound Parkway NW, Suite 300 Boca Raton, FL 33487-2742,
U.S.A: CRC Press:Taylor & Francis Group, 2014, pp. 88-92.

[23] R. Petersen, «Ubuntu 18.04 Introduction,» Ubuntu 18.04 LTS
Desktop: Applications and Administration, Alameda, Surfing Turtle
Press, 2018, pp. 1-8.

[24] C. Patras, «A study on Software Define Networks,» Piraeus, 2013-
2015.

[25] F. ONGARO, «ENHANCING QUALITY OF SERVICE IN
SOFTWARE-DEFINED NETWORKS,» Bologna, 2013–2014.

[26] N. Gude, T. Koponen, J. Pettit, B. Pfaff, M. Casado, N. McKeown ve
S. Shenker, «NOX: Towards an Operating System for Networks,»
ACM SIGCOMM Computer Communication Review, vol. 38, no. 3,
pp. 105-110, July 2008.

[27] F. ONGARO, «ENHANCING QUALITY OF SERVICE IN
SOFTWARE-DEFINED NETWORKS,» Bologna BO, İtalya, 2013-
2014.

[28] F. Hu, Editor ve M. Farooq, «Language and Programming in SDN
/OpenFlow,» Network innovation through OpenFlow and SDN:
principles and design., 6000 Broken Sound Parkway NW,Suite 300
Boca Raton, FL 33487-2742, U.S.A: CRC Press Taylor & Francis
Group, 2014, pp. 76-77.

[29] F. ONGARO, «ENHANCING QUALITY OF SERVICE IN
SOFTWARE-DEFINED NETWORKS,» Bologna, 2014.

[30] A. Orebaugh, G. Ramirez, J. Burke, L. Pesce, J. Wright ve G. Morris,
«Introducing Wireshark:Network Protocol Analyzer,» Wireshark &
Ethereal Network Protocol Analyzer Toolkit, Rockland, Syngress
Publishing, 2007, pp. 52-53.

[31] M. Team, «Mininet,» Octopress, 2018. [Online]. Available:
http://mininet.org/walkthrough/. [Accessed: 16 September 2019].

[32] y. a. pratama, Director, Mininet Part 2. [video]. 2017.
[33] M. I. KHAN, «GeeksforGeeks,» GeeksforGeeks, [Online]. Available:

https://www.geeksforgeeks.org/chmod-command-linux/. [Accessed:
16 September 2019].

Habiba Amed et al, / (IJCSIT) International Journal of Computer Science and Information Technologies, Vol. 11 (3) , 2020, 31-36

www.ijcsit.com 36

